import { RenderTarget, Vector2, PostProcessingUtils } from 'three'; import { TempNode, nodeObject, Fn, If, float, NodeUpdateType, uv, uniform, convertToTexture, vec2, vec4, QuadMesh, passTexture, mul, NodeMaterial } from 'three/tsl'; // WebGPU: The use of a single QuadMesh for both gaussian blur passes results in a single RenderObject with a SampledTexture binding that // alternates between source textures and triggers creation of new BindGroups and BindGroupLayouts every frame. const _quadMesh1 = /*@__PURE__*/ new QuadMesh(); const _quadMesh2 = /*@__PURE__*/ new QuadMesh(); let _rendererState; const premult = /*@__PURE__*/ Fn( ( [ color ] ) => { return vec4( color.rgb.mul( color.a ), color.a ); } ).setLayout( { name: 'premult', type: 'vec4', inputs: [ { name: 'color', type: 'vec4' } ] } ); const unpremult = /*@__PURE__*/ Fn( ( [ color ] ) => { If( color.a.equal( 0.0 ), () => vec4( 0.0 ) ); return vec4( color.rgb.div( color.a ), color.a ); } ).setLayout( { name: 'unpremult', type: 'vec4', inputs: [ { name: 'color', type: 'vec4' } ] } ); class GaussianBlurNode extends TempNode { static get type() { return 'GaussianBlurNode'; } constructor( textureNode, directionNode = null, sigma = 2 ) { super( 'vec4' ); this.textureNode = textureNode; this.directionNode = directionNode; this.sigma = sigma; this._invSize = uniform( new Vector2() ); this._passDirection = uniform( new Vector2() ); this._horizontalRT = new RenderTarget( 1, 1, { depthBuffer: false } ); this._horizontalRT.texture.name = 'GaussianBlurNode.horizontal'; this._verticalRT = new RenderTarget( 1, 1, { depthBuffer: false } ); this._verticalRT.texture.name = 'GaussianBlurNode.vertical'; this._textureNode = passTexture( this, this._verticalRT.texture ); this._textureNode.uvNode = textureNode.uvNode; this.updateBeforeType = NodeUpdateType.FRAME; this.resolution = new Vector2( 1, 1 ); this.premultipliedAlpha = false; } setPremultipliedAlpha( value ) { this.premultipliedAlpha = value; return this; } getPremultipliedAlpha() { return this.premultipliedAlpha; } setSize( width, height ) { width = Math.max( Math.round( width * this.resolution.x ), 1 ); height = Math.max( Math.round( height * this.resolution.y ), 1 ); this._invSize.value.set( 1 / width, 1 / height ); this._horizontalRT.setSize( width, height ); this._verticalRT.setSize( width, height ); } updateBefore( frame ) { const { renderer } = frame; _rendererState = PostProcessingUtils.resetRendererState( renderer, _rendererState ); // const textureNode = this.textureNode; const map = textureNode.value; const currentTexture = textureNode.value; _quadMesh1.material = this._material; _quadMesh2.material = this._material; this.setSize( map.image.width, map.image.height ); const textureType = map.type; this._horizontalRT.texture.type = textureType; this._verticalRT.texture.type = textureType; // horizontal renderer.setRenderTarget( this._horizontalRT ); this._passDirection.value.set( 1, 0 ); _quadMesh1.render( renderer ); // vertical textureNode.value = this._horizontalRT.texture; renderer.setRenderTarget( this._verticalRT ); this._passDirection.value.set( 0, 1 ); _quadMesh2.render( renderer ); // restore textureNode.value = currentTexture; PostProcessingUtils.restoreRendererState( renderer, _rendererState ); } getTextureNode() { return this._textureNode; } setup( builder ) { const textureNode = this.textureNode; // const uvNode = textureNode.uvNode || uv(); const directionNode = vec2( this.directionNode || 1 ); let sampleTexture, output; if ( this.premultipliedAlpha ) { // https://lisyarus.github.io/blog/posts/blur-coefficients-generator.html sampleTexture = ( uv ) => premult( textureNode.uv( uv ) ); output = ( color ) => unpremult( color ); } else { sampleTexture = ( uv ) => textureNode.uv( uv ); output = ( color ) => color; } const blur = Fn( () => { const kernelSize = 3 + ( 2 * this.sigma ); const gaussianCoefficients = this._getCoefficients( kernelSize ); const invSize = this._invSize; const direction = directionNode.mul( this._passDirection ); const weightSum = float( gaussianCoefficients[ 0 ] ).toVar(); const diffuseSum = vec4( sampleTexture( uvNode ).mul( weightSum ) ).toVar(); for ( let i = 1; i < kernelSize; i ++ ) { const x = float( i ); const w = float( gaussianCoefficients[ i ] ); const uvOffset = vec2( direction.mul( invSize.mul( x ) ) ).toVar(); const sample1 = sampleTexture( uvNode.add( uvOffset ) ); const sample2 = sampleTexture( uvNode.sub( uvOffset ) ); diffuseSum.addAssign( sample1.add( sample2 ).mul( w ) ); weightSum.addAssign( mul( 2.0, w ) ); } return output( diffuseSum.div( weightSum ) ); } ); // const material = this._material || ( this._material = new NodeMaterial() ); material.fragmentNode = blur().context( builder.getSharedContext() ); material.name = 'Gaussian_blur'; material.needsUpdate = true; // const properties = builder.getNodeProperties( this ); properties.textureNode = textureNode; // return this._textureNode; } dispose() { this._horizontalRT.dispose(); this._verticalRT.dispose(); } _getCoefficients( kernelRadius ) { const coefficients = []; for ( let i = 0; i < kernelRadius; i ++ ) { coefficients.push( 0.39894 * Math.exp( - 0.5 * i * i / ( kernelRadius * kernelRadius ) ) / kernelRadius ); } return coefficients; } } export default GaussianBlurNode; export const gaussianBlur = ( node, directionNode, sigma ) => nodeObject( new GaussianBlurNode( convertToTexture( node ), directionNode, sigma ) ); export const premultipliedGaussianBlur = ( node, directionNode, sigma ) => nodeObject( new GaussianBlurNode( convertToTexture( node ), directionNode, sigma ).setPremultipliedAlpha( true ) );