import { Vector2, Vector3 } from 'three'; import { getNormalFromDepth, getViewPosition, convertToTexture, TempNode, nodeObject, Fn, float, NodeUpdateType, uv, uniform, Loop, luminance, vec2, vec3, vec4, uniformArray, int, dot, max, pow, abs, If, textureSize, sin, cos, mat2, PI } from 'three/tsl'; class DenoiseNode extends TempNode { static get type() { return 'DenoiseNode'; } constructor( textureNode, depthNode, normalNode, noiseNode, camera ) { super(); this.textureNode = textureNode; this.depthNode = depthNode; this.normalNode = normalNode; this.noiseNode = noiseNode; this.cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse ); this.lumaPhi = uniform( 5 ); this.depthPhi = uniform( 5 ); this.normalPhi = uniform( 5 ); this.radius = uniform( 5 ); this.index = uniform( 0 ); this._resolution = uniform( new Vector2() ); this._sampleVectors = uniformArray( generatePdSamplePointInitializer( 16, 2, 1 ) ); this.updateBeforeType = NodeUpdateType.FRAME; } updateBefore() { const map = this.textureNode.value; this._resolution.value.set( map.image.width, map.image.height ); } setup() { const uvNode = uv(); const sampleTexture = ( uv ) => this.textureNode.uv( uv ); const sampleDepth = ( uv ) => this.depthNode.uv( uv ).x; const sampleNormal = ( uv ) => ( this.normalNode !== null ) ? this.normalNode.uv( uv ).rgb.normalize() : getNormalFromDepth( uv, this.depthNode.value, this.cameraProjectionMatrixInverse ); const sampleNoise = ( uv ) => this.noiseNode.uv( uv ); const denoiseSample = Fn( ( [ center, viewNormal, viewPosition, sampleUv ] ) => { const texel = sampleTexture( sampleUv ).toVar(); const depth = sampleDepth( sampleUv ).toVar(); const normal = sampleNormal( sampleUv ).toVar(); const neighborColor = texel.rgb; const viewPos = getViewPosition( sampleUv, depth, this.cameraProjectionMatrixInverse ).toVar(); const normalDiff = dot( viewNormal, normal ).toVar(); const normalSimilarity = pow( max( normalDiff, 0 ), this.normalPhi ).toVar(); const lumaDiff = abs( luminance( neighborColor ).sub( luminance( center ) ) ).toVar(); const lumaSimilarity = max( float( 1.0 ).sub( lumaDiff.div( this.lumaPhi ) ), 0 ).toVar(); const depthDiff = abs( dot( viewPosition.sub( viewPos ), viewNormal ) ).toVar(); const depthSimilarity = max( float( 1.0 ).sub( depthDiff.div( this.depthPhi ) ), 0 ); const w = lumaSimilarity.mul( depthSimilarity ).mul( normalSimilarity ); return vec4( neighborColor.mul( w ), w ); } ); const denoise = Fn( ( [ uvNode ] ) => { const depth = sampleDepth( uvNode ).toVar(); const viewNormal = sampleNormal( uvNode ).toVar(); const texel = sampleTexture( uvNode ).toVar(); If( depth.greaterThanEqual( 1.0 ).or( dot( viewNormal, viewNormal ).equal( 0.0 ) ), () => { return texel; } ); const center = vec3( texel.rgb ).toVar(); const viewPosition = getViewPosition( uvNode, depth, this.cameraProjectionMatrixInverse ).toVar(); const noiseResolution = textureSize( this.noiseNode, 0 ); let noiseUv = vec2( uvNode.x, uvNode.y.oneMinus() ); noiseUv = noiseUv.mul( this._resolution.div( noiseResolution ) ); const noiseTexel = sampleNoise( noiseUv ).toVar(); const x = sin( noiseTexel.element( this.index.mod( 4 ).mul( 2 ).mul( PI ) ) ).toVar(); const y = cos( noiseTexel.element( this.index.mod( 4 ).mul( 2 ).mul( PI ) ) ).toVar(); const noiseVec = vec2( x, y ).toVar(); const rotationMatrix = mat2( noiseVec.x, noiseVec.y.negate(), noiseVec.x, noiseVec.y ).toVar(); const totalWeight = float( 1.0 ).toVar(); const denoised = vec3( texel.rgb ).toVar(); Loop( { start: int( 0 ), end: int( 16 ), type: 'int', condition: '<' }, ( { i } ) => { const sampleDir = this._sampleVectors.element( i ).toVar(); const offset = rotationMatrix.mul( sampleDir.xy.mul( float( 1.0 ).add( sampleDir.z.mul( this.radius.sub( 1 ) ) ) ) ).div( this._resolution ).toVar(); const sampleUv = uvNode.add( offset ).toVar(); const result = denoiseSample( center, viewNormal, viewPosition, sampleUv ); denoised.addAssign( result.xyz ); totalWeight.addAssign( result.w ); } ); If( totalWeight.greaterThan( float( 0 ) ), () => { denoised.divAssign( totalWeight ); } ); return vec4( denoised, texel.a ); } ).setLayout( { name: 'denoise', type: 'vec4', inputs: [ { name: 'uv', type: 'vec2' } ] } ); const output = Fn( () => { return denoise( uvNode ); } ); const outputNode = output(); return outputNode; } } export default DenoiseNode; function generatePdSamplePointInitializer( samples, rings, radiusExponent ) { const poissonDisk = generateDenoiseSamples( samples, rings, radiusExponent ); const array = []; for ( let i = 0; i < samples; i ++ ) { const sample = poissonDisk[ i ]; array.push( sample ); } return array; } function generateDenoiseSamples( numSamples, numRings, radiusExponent ) { const samples = []; for ( let i = 0; i < numSamples; i ++ ) { const angle = 2 * Math.PI * numRings * i / numSamples; const radius = Math.pow( i / ( numSamples - 1 ), radiusExponent ); samples.push( new Vector3( Math.cos( angle ), Math.sin( angle ), radius ) ); } return samples; } export const denoise = ( node, depthNode, normalNode, noiseNode, camera ) => nodeObject( new DenoiseNode( convertToTexture( node ), nodeObject( depthNode ), nodeObject( normalNode ), nodeObject( noiseNode ), camera ) );